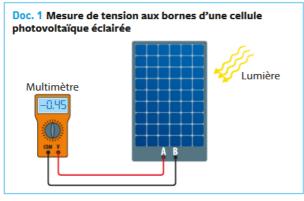
Exercice 1


Étude prévisionnelle d'un circuit électrique

Effectuer des calculs ; exploiter un schéma.

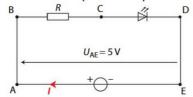
Un circuit est alimenté par une pile de 4,5 V. La tension $U_{\rm DC}$ aux bornes de la DEL est 2,0 V. L'intensité du courant qui circule de E vers C dans la branche comportant la DEL est 25 mA, celle du courant qui circule dans le moteur électrique de G vers F est 50 mA.

- 1. Calculer la tension U_{ED} aux bornes du conducteur ohmique.
- **2.** Calculer la résistance *R* du conducteur ohmique.
- 3. Calculer l'intensité du courant qui traverse la pile.

Exercice 2

- **1.** Indiquer si le voltmètre mesure la tension U_{AB} ou U_{BA} .
- 2. Donner la borne positive de la cellule photovoltaïque.

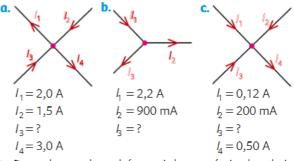
Exercice 4


Un choix de résistance adaptée

Un montage très simple pour apprendre à utiliser un microcontrôleur permet la mise en clignotement d'une DEL.

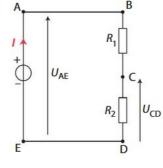
La DEL rouge utilisée fonctionne lorsque la tension entre ses bornes est 1,8 V et pour une intensité du

courant qui la traverse comprise entre 10 mA et 30 mA. Le microcontrôleur impose entre ses bornes une tension périodique valant soit 0 soit 5,0 V. Il est donc nécessaire de protéger la DEL à l'aide d'un conducteur ohmique. Le schéma du circuit réalisé peut être représenté ainsi :


1. Exprimer puis calculer la tension U_{BC}.

2. On dispose de trois conducteurs ohmiques de résistances respectives : 0,22 k Ω , 2,2 k Ω et 2 M Ω . Lequel choisir pour protéger la DEL ?

3. Expliquer pourquoi la DEL clignote.


Pour chacun des schémas ci-dessus, écrire la relation liant les intensités et calculer l'intensité manquante.

Exercice 5

Le pont diviseur de tension

| Effectuer des calculs ; interpréter des résultats.

Le montage à pont diviseur de tension schématisé ci-contre est souvent utilisé dans des capteurs électriques. La résistance R_2 dépend d'un paramètre extérieur. Dans ce montage : $R_2 = 100 \Omega$, $R_1 = 200 \Omega$ et $U_{AE} = 6,0 V$. On mesure la tension U_{CD} .

1. Citer un paramètre dont peut dépendre R₂.

2. a. Exprimer U_{BD} en fonction de U_{AE} .

b. En déduire l'expression de l'intensité l du courant électrique en fonction de $U_{AE'}R_1$ et R_2 .

3. Exprimer la tension U_{CD} en fonction de U_{AE} , R_1 et R_2 , puis expliquer l'appellation « diviseur de tension ».